LEGAL DISCLAIMER

The information in this presentation is confidential and proprietary to SAP and may not be disclosed without the permission of SAP. This presentation is not subject to your license agreement or any other service or subscription agreement with SAP. SAP has no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation and SAP’s strategy and possible future developments, products and or platforms directions and functionality are all subject to change and may be changed by SAP at any time for any reason without notice. The information in this document is not a commitment, promise or legal obligation to deliver any material, code or functionality. This document is provided without a warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. This document is for informational purposes and may not be incorporated into a contract. SAP assumes no responsibility for errors or omissions in this document, except if such damages were caused by SAP’s willful misconduct or gross negligence.

All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from exceptions. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.

DOCUMENT HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2017-03-31</td>
<td>First version created</td>
</tr>
</tbody>
</table>
TYPOGRAPHIC CONVENTIONS

<table>
<thead>
<tr>
<th>Type Style</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>Words or characters quoted from the screen. These include field names, screen titles, pushbuttons labels, menu names, menu paths, and menu options. Textual cross-references to other documents.</td>
</tr>
<tr>
<td>Example</td>
<td>Emphasized words or expressions.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>Technical names of system objects. These include report names, program names, transaction codes, table names, and key concepts of a programming language when they are surrounded by body text, for example, SELECT and INCLUDE.</td>
</tr>
<tr>
<td>Example</td>
<td>Output on the screen. This includes file and directory names and their paths, messages, names of variables and parameters, source text, and names of installation, upgrade and database tools.</td>
</tr>
<tr>
<td>Example</td>
<td>Exact user entry. These are words or characters that you enter in the system exactly as they appear in the documentation.</td>
</tr>
<tr>
<td><Example></td>
<td>Variable user entry. Angle brackets indicate that you replace these words and characters with appropriate entries to make entries in the system.</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>Keys on the keyboard, for example, F2 or ENTER.</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1. SAP STANDARDS FOR END-TO-END SOLUTION OPERATIONS ... 5
1.1 Control Center Approach .. 7
2. OVERVIEW OF THE SAP STANDARD FOR TEST MANAGEMENT 10
2.1 Principles of SAP Test Management .. 12
2.2 Functionality and Tools for Test Management ... 12
2.3 Test Management in SAP Solution Manager 7.2 .. 13
2.3.1 Test Suite .. 17
3. LIFECYCLE OF TEST MANAGEMENT ... 24
3.1 Plan phase .. 24
3.1.1 Define the Test Strategy .. 24
3.1.2 Prepare the Tests .. 25
3.1.3 Identify the Test Scope .. 26
3.2 Build phase .. 27
3.3 Run phase ... 28
3.3.1 Execution and Documentation of Tests ... 28
3.4 Optimize phase .. 29
4. DRIVING CONTINUOUS IMPROVEMENT ... 30
4.1 Quality Assurance Tasks .. 30
4.2 Quality Targets and KPIs ... 30
5. TRAINING ... 33
1 SAP STANDARDS FOR END-TO-END SOLUTION OPERATIONS

IT organizations face new challenges every day as they attempt to remain effective and future safe while also keeping costs for day-to-day operations as low as possible. They are also being challenged more than ever to demonstrate their value to the business. Therefore, it is important to optimize the day-to-day tasks that appear to have less obvious business value and to use KPI and benchmark-based reporting to make IT processes more visible, demonstrating the real value that IT can provide.

In order to minimize the costs of IT, it is necessary to standardize and automate the end-to-end IT processes without reducing the SLAs required by the business, such as stability, availability, performance, process and data transparency, data consistency, IT process compliance, and so on.

Based on the experience gained by SAP Digital Business Services (DBS) while serving more than 36,000 customers, SAP has defined process standards and best practices to help customers set up and run end-to-end solution operations for their SAP-centric solutions.

The Build phase of SAP best practices supports a Build SAP Like a Factory approach, consisting of the following processes:

- Custom code management
- Change, test, and release management
- Incident, problem, and request management
- Solution documentation

During the Run phase of a solution, adapting your IT infrastructure to a Run SAP Like a Factory operation impacts both application operations and business process operations. Therefore, operations processes, such as end-to-end root-cause analysis, system monitoring, system administration, and data volume management need to be optimized to achieve state-of-the-art application operations. In business process operations, the same applies to business process and interface monitoring (including performance optimization), data consistency management, and job management.

Quality management processes and tasks need to be established throughout the lifecycle to guarantee continuous improvement of the end-to-end solution operations processes while simultaneously ensuring the flexibility needed to react to changing requirements.
Figure 1: Organizational model for solution operations

Figure 1 shows an organizational model for solution operations that aligns SAP best practice topics and SAP standards for End-to-End Solution Operations with SAP’s control center approach. The Operations Control Center executes and controls the Run SAP Like a Factory processes, while the Innovation Control Center ensures optimal custom code management and a smooth transition to production with integration validation procedures. SAP connects to these control centers from the Mission Control Center to ensure that professional support is available to the customer. The following Application Lifecycle Management (ALM) functions are not provided directly in one of the control centers because they must be handled across different areas:

- Change, test, and release management
- Incident, problem, and request management
- Solution documentation

The quality management methodologies are an essential part of SAP's Advanced Customer Center of Expertise (Advanced CCoE) concept and ensure that the KPI-driven processes are continuously improved across all processes and teams. In addition, the quality manager roles ensure consistent and value-centric reporting to the business and management. This unified reporting platform is known as the Single Source of Truth.
1.1 Control Center Approach

The control center approach consists of three components:

- Mission Control Center (MCC)
- Innovation Control Center (ICC)
- Operations Control Center (OCC)

Both the ICC and OCC are made available at your IT facility, while the MCC is located at regional SAP sites. All three approaches are linked together through the SAP Solution Manager application management solution.

Mission Control Center (MCC)

The purpose of SAP Mission Control Centers (MCCs) is to support the ICCs and OCCs at customer locations, enabling proactive identification and fast resolution on critical issues operating the SAP solutions and helping to apply standard SAP software functionality that addresses business requirements. The MCCs are serving as the central inbound channels for all complex and business critical request of our customers. MCCs connecting customers to experts from SAP that are ready to provide support across all solution areas and phases of the application lifecycle.

SAP MCCs are located on North America, Latin America, Europe and Asia regions. All MCC’s are networked, use a common infrastructure and service management system, providing 24x7 year around coverage for critical customer situations.
Innovation Control Center (ICC)

SAP’s Innovation Control Center (ICC) is the delivery framework to deliver mid to long term innovation programs. The ICC combines a set of experts, services, tools and templates and represents a lean front office at the customer location that is connected to all offerings of a very strong back office, called the Mission Control Center (MCC). This ensures access to the expertise of the entire SAP ecosystem in a structured way.

The Innovation Framework is the foundation of an ICC and is led by a certified ICC Lead. The Lead delivers against a long-term, value based roadmap, sets-up collaboration tools and dashboards for the connection to the MCC and creates innovation service plans for the underlying projects. ICC services are available for all phase of innovation projects

- Discover/Prepare: e.g. Prototyping
- Explore/Design: e.g. Gap Validation or Design Review
- Realization/Deploy: e.g. Integration Validation (Safeguarding)
- Run: Transition to Operations

The overall concept of ICC/MCC establish a long-term relationship to SAP and helps saving implementation costs and time for our customers.

Operations Control Center (OCC)

The Operations Control Center (OCC) is the physical manifestation of the Run SAP Like a Factory philosophy. The Operation Control Center (OCC) is a service of an IT organization that

- creates the relevant transparency to business and other stakeholders along the IT aspects of the seamless execution of E2E critical or core business processes
- provides the relevant transparency on health of the end to end IT landscape and underlying software components
- manages critical exceptions and continuous improvement on the above aspects based on data driven insights
- is supported by standardized IT processes
An Operation Control Center is sitting as a layer across / above typical IT departments (who are responsible for the day to day IT operations). It is the job of the OCC to immerse itself in the landscape and processes to fully understand the operational challenges facing the business. Centralized tools and standardized monitoring procedures provide much-needed transparency into these challenges. Meanwhile, a focus on continuous improvement and optimization can improve operations over the long term. As a result, IT departments can realize reduced costs and better capitalize on new opportunities for innovation. To achieve these goals, OCC relies on a close interaction with both the Innovation Control Center (ICC) and the SAP Mission Control Center (MCC).

The OCC is typically equipped with large screens that display the status of business processes, IT landscape components, as well as exceptions and alerts. If problems occur, a video link can be used to obtain live support from SAP and partners. The customer is responsible for managing the OCC.

The OCC is most effective when closely integrated with other IT processes, such as IT Service Management (ITSM) and Change Management. Central monitors and dashboards based on application and business process operations display the current status of business and IT-related processes. This data can also be used to drive continuous improvement.

An effective system monitoring and alerting infrastructure is fundamental to the success of an OCC and feeding the OCC. The OCC is safeguarding all relevant IT aspects, and the execution of the end to end business processes in scope. The OCC reacts and manages on exception along this critical business processes according to predefined error-resolution activities. The OCC manages follow-up activities for error handling if the relevant tasks are not completed within a certain timeframe.
2 OVERVIEW OF THE SAP STANDARD FOR TEST MANAGEMENT

This document describes the main guidelines and tools provided by SAP to improve the level of test management for SAP customers. Given that SAP Business Suite is used every day by thousands of companies, it should, theoretically contain very few errors. However, the way SAP and, above all, SAP customers coordinate and make changes to SAP solutions that have already been implemented means that it is important to perform effective tests, even on business processes modeled with SAP solutions.

Most SAP software is used to map highly integrated and often complex business processes. When SAP standard software is initially implemented, it is adapted to accommodate customer-specific business processes by performing the following basic activities:

- Configure business processes and how they are managed, for example, pricing.
- Enter the master data and attributes that are needed to execute business processes, for example, vendors, materials, services and customers.
- Implement and configure software from SAP partners or third parties and integrate it with SAP solutions using standard or customer-specific interfaces.
- Where appropriate, the end users choose the user interface for running business processes.
- If required, create and implement composite applications to handle extremely customer-specific processes. These applications are based on the enterprise service-oriented architecture (SOA) and use Web services to communicate with SAP Business Suite applications.
- If required, include custom code in SAP standard solutions to map extremely customer-specific functions or processes.

For the majority of SAP customers, the outcome of these activities is a comprehensive solution that encompasses complex interactions between SAP, partner, and third-party applications and interfaces, as well as custom code and customer developments.

Of course, the overall solution at each SAP customer is unique. Therefore, the solution must be tested thoroughly before going live. Such testing includes tests of individual functions, integration tests between SAP and non-SAP applications, scenario tests in which entire business processes are executed from beginning to end, and performance and acceptance tests by end users.

After going live, there are a number of reasons why SAP customers need to make changes to their SAP-centric solution. In many cases, these changes result from maintenance work or functional enhancements of business processes that are required by different departments. These changes are the main cause of further testing activities subsequent to going live.

The required tests cannot be performed entirely by the software manufacturers because all tests must take into account the customer environment with its configuration, master data and interfaces.

Typical challenges and pain points with regards to testing include the following:

- Functional and integration tests in heterogeneous system landscapes
 - Integration testing for business processes that require several SAP applications and system instances
 - Testing of interfaces that connect SAP solutions with third-party applications

- Lack of analysis concerning the impact of changes
Changes to SAP solutions, for example, configuration changes, often impact a number of critical business processes without the application management being aware.

Due to a lack of options for analysis, these effects cannot be detected, which prompts many companies to delay or avoid necessary adjustments, for example, activating SAP support packages.

The task of defining the required test coverage is also severely hindered by the lack of analysis opportunities. As a result, test sets analyze unchanged areas and changes are often made without all critical processes first being covered by a regression test.

- **Provision of test environments and test data**
 - Test environments should resemble the production environment and reflect the changes to be tested as closely as possible. Due to the large volume of data and sensitivity of the data, test environments cannot be created simply by making a copy of the production system. Consequently, many companies’ test systems contain obsolete configurations and data.
 - Problems are compounded by the fact that providing suitable test data for manual and automatic tests can be difficult. For example, the customer credit-rating check in the order-to-cash process can only be carried out if special data conditions exist.

- **Test automation**
 - While automated tests can reduce the number of manual testers, they require specially trained experts with knowledge and experience of the testing tools to reproduce the required dynamics.
 - Automated tests demand high levels of maintenance. The effort varies depending on the tool because changes to the SAP solution often damage the automated test cases.

SAP provides the following solutions to these test management challenges:

- Testing is included in the methodology for implementing, operating, and adapting SAP-centric solutions.
- The methodology and the test management processes are based on best practices.
- SAP Solution Manager provides all necessary test capabilities.
2.1 Principles of SAP Test Management

SAP’s strategy for test management is guided by the following key principles that influence the existing level of test functions and their further development:

- SAP Solution Manager as the central platform for test management
 SAP Solution Manager as the central platform for E2E process testing delivers all major functions to handle all aspects of test management for SAP-centric solutions.

- Risk-based test planning
 Risk-based test planning helps you to analyze the impact of SAP software changes on critical business processes and to provide adequate test plan proposals.

- More options for SAP customers
 Customers, who have already a defined test solution from partners or third parties, have the choice of using it in combination with the Test Suite provided by SAP Solution Manager.

2.2 Functionality and Tools for Test Management

SAP Solution Manager provides a central platform with the following functions for handling all aspects of test management and related activities across the entire lifecycle:

- Documentation of business processes and assignment to SAP systems
- Dynamic analysis of the impact of software changes on SAP business processes
- Planning of manual and automated tests
- Test execution and documentation
- Handling of incidents and defects
- Monitoring of test execution and their defects
- Test status, progress and effort reporting
- Validation of integration tests

These functions are supplemented by a range of additional SAP products, such as:

- SAP Test Data Migration Server (TDMS)
- SAP Quality Center by HP
- SAP Test Acceleration and Optimization (TAO)
- SAP LoadRunner by HP

Most of these tools are highly integrated with SAP Solution Manager. Test applications from other suppliers, such as IBM Rational Software, can be integrated with the tools provided in SAP Solution Manager using existing interfaces.
2.3 Test Management in SAP Solution Manager 7.2

With SAP Solution Manager 7.2, SAP provides a full-blown application for manual / automated testing and Change Impact Analysis. The SAP Solution Manager Test Suite is the default Test Suite for all SAP customers, except for customers with a strategic decision for a partner test suite.

The SAP Solution Manager Test Suite supports the entire testing process. However, the whole process based on the initial foundation of the Solution Documentation, Business Process Change Analyzer (BPCA) and Test Data Providing.

Solution Documentation / Business Process Management

Using the Business Process Management functions, you can design, document, and hierarchically catalog your business processes. The documentation is extremely important because it contains business information from the business units, technical information about logical and physical systems, and interface information. The business units can store their business requirements from a test management viewpoint. Later, you use the Business Process Management to assign the manual and automatic test cases to the business processes. This provides a holistic view of the business processes. All technical and business aspects are entered centrally using the Business Process Management and then adjusted centrally if changes are made.
Business Process Change Analyzer

When a change is made in an existing SAP solution, important applications or critical business processes might be affected. Regardless of whether SAP source code is adjusted due to SAP maintenance packages, customer enhancements, or changes to the configuration or interfaces, it is crucial to identify which areas of the solution are affected by the change. SAP Solution Manager provides the Business Process Change Analyzer (BPCA) for precisely analyzing the SAP objects that are used when business processes are executed. In the event of an intentional change, the objects contained in the transport are compared with the technical bill of material (TBOM) of the target system to identify the affected business processes and areas. This helps the customer to decide whether to make the intended change as planned or a later point, for example, if there is not enough time to run a satisfactory regression test on all affected areas.

Figure 7: SAP Solution Manager Business Process Management

For more detailed information about SAP Solution Manager Business Blueprint, see the SAP Standard for Process Management.

Figure 8: SAP Solution Manager - Change Impact Analysis Approach
To ensure the highest level of accuracy, the analysis is not performed statically on the source code; instead, it is performed dynamically at run time to record all the SAP objects used in the business process variant. The customer executes the critical business processes in an appropriate system and, as the processes are being executed, the BPCA records all the SAP objects (module pools, function modules, configuration and master data tables, interfaces, and so on) that are used and generates a technical bill of material (TBOM), which is then assigned to the business process using the Business Process Management.

If SAP support packages, SAP enhancement packages, custom developments, or configuration adjustments might be implemented in the future, you can use the BPCA to identify business processes that could potentially be affected. You can save these analyses with a time stamp and use the detailed results for subsequent test applications.

Recommendation

SAP recommends assigning all test cases to the relevant business processes using the Business Process Management. You can then automatically generate a test plan containing all affected processes based on the BPCA. It would also be helpful to define processes with necessary End to End tests to avoid subsequent work during test planning.

SAP Test Data Migration Server

SAP Test Data Migration Server (TDMS) accelerates the process of automatically building test systems and other, non-productive SAP systems. TDMS creates the target system using the configuration, master, and transaction data from a source system, such as the production system. In addition to creating an initial test system, you can also add data or replace data in an existing system.

Note

SAP TDMS is a separate product and, therefore, must be purchased separately.
As customers are keen to keep the volume of data in their test system to a minimum, creating a system using TDMS differs considerably from simply copying a system. For example, sensitive data should be avoided or at least modified. For this purpose, a number of different methods are used in TDMS. When the system is first built, the TDMS extracts repository and cross-client information to create a system shell. Client-specific configuration data and master data can then be transferred to the test system. A range of methods are used to reduce the transaction data. For example, you can limit the transaction data that is transferred based on one or more periods or organizational units. The flexible TDMS framework also supports customer-specific methods. For sensitive data, for example from SAP HR, you can apply preconfigured data anonymization methods.

![Figure 10: SAP TDMS](image)

Once the initial build is complete, TDMS allows you to update specific items of data. You can select documents from the source system and copy them to the target system together with all preceding documents. This means that you can perform integration tests even for complex business processes. TDMS is designed to achieve high data throughput and performance levels while putting as little strain as possible on the source system.

Note

In all options, SAP Solution Manager plays a pivotal role in bringing together technical and business aspects. All options use comprehensive test management functions that offer optimal support for coordinating and executing tests.

To achieve the greatest levels of efficiency and transparency, companies should choose the option most suited to their particular situation and use all the tools provided.
2.3.1 **Test Suite**

Almost all the functions and tools for testing are provided by SAP Solution Manager and SAP Test Data Migration Server (SAP TDMS).

Note

SAP TDMS is a separate product and, therefore, must be purchased separately.

You determine the test focus based on the planned changes. You can then identify the test cases and create test plans.

SAP Solution Manager Test Suite

With the Test Suite, you use the SAP Solution Manager test capabilities to create test packages and assign them to the correspondent tester.

When designing and documenting business processes, you can store requirements that are relevant for creating test cases. For example, you can create test documents and instructions to help manual testers perform tests. These documents can be entered directly as text or created in a word processing program and uploaded to the test case. To direct the tester straight to the relevant transaction and system, you can also include test objects. In addition, each test case can be linked with the business requirements, which means that you can check that all requirements have been covered in each test case.

Recommendation

SAP recommends assigning all test cases directly to the business processes. When the design stage is complete, you can configure the business processes in SAP Solution Manager.
All relevant test cases are grouped together in one or more test plans for a test cycle. You can create test plans manually by selecting the appropriate test cases. Alternatively, the test plan can be generated automatically using the business process hierarchy or test case attributes (for example, test case classification). For monitoring and reporting reasons, several test cases can be organized in a test series or test classification.

The test cases are assigned to testers using test packages. Like test plans, you can either create the packages manually from the test cases found in the test plan or they can be generated by selecting test case attributes or defined sequences. One or more testers can be assigned to each package.

Figure 12: SAP Solution Manager Test Plan Management

Executing tests on complex process chains often requires different testers with different knowledge of the processes. For this reason, you can create test sequences and define which test cases are performed by which testers. When each step of a test sequence is complete, the next tester is notified by e-mail that they can begin testing.

Figure 131: SAP Solution Manager Test Suite — Test Sequences
To ensure that your internal requirements are met and enable a formal release procedure, you can use a status release schema with the Test Suite. In this schema, you can specify that test plans and test packages may only be used once they have been explicitly released. Once test activities have been completed, the test plan and test packages can be locked.

Test Process supported by Test Plan Release Status Schema

![Figure 14: SAP Solution Manager Test Suite — Release Status Schema](image)

You can manage any defects or incidents that occur during testing in SAP Solution Manager using the integrated IT Service Management (ITSM) component. The test case and incident message are linked to each other and can be called directly from status reporting for further analysis. The Test Suite provides a wide range of hierarchical and list-based reports for monitoring the status. Test coordinators can use these reports to track the progress of testing in real-time, even if tests are being conducted in different locations around the world. It is possible to analyze the number and priority of incidents that have occurred. Customer-specific status reports, drilldown analyses, and dashboards are enabled using the integration of SAP Solution Manager Test Suite and SAP Business Intelligence (SAP BI).
Test Automation Framework

The Test Automation Framework (TAF) helps you to create and execute automated test cases. The TAF is integrated into the SAP Solution Manager System Landscape (LMDB), complementing the Extended Computer Aided Test Tool (eCATT) and SAP Component Based Test Automation (CBTA). This simplifies creating test configurations and test data containers.

Just like manual tests, automated tests using the TAF can be started from the test package. Once the test has been executed, the application automatically sets the test status. You manage the extensive test logs in the Test Suite. The logs can be called directly from the status reports.

![Figure 15: SAP Solution Manager – Test Automation Framework](image)

The Test Automation Framework supports multiple third-party test automation tools from certified independent software vendors (ISVs). For a list of certified ISVs, see the SAP Partner Directory at: http://global.sap.com/community/ebook/2013_09_adpd/enEN/search.html and search for "test tool". This provides considerable advantages throughout the entire lifecycle of test cases because you can create, manage, maintain, execute, and evaluate the results of the test cases in one environment. For instance, automated test scripts can be created from CRM or Web shop applications using partner applications that are invoked at an appropriate place and time with an eCATT or CBTA test script.
In addition, the TAF provides the functionality for scheduling automated tests for a specific time, for example, at night time (light-out tests), and on remote machines (either physical computers or virtual machines).

Component Based Test Automation

In Test Suite, the SAP Component Based Test Automation (CBTA) tool is used to create automated test cases. For testing user interfaces that are not based on SAP technology, CBTA must be supplemented with tools from partners and third parties using the Test Automation Framework. These tools enable you to create automated tests for extensive, system-wide, and heterogeneous business process chains. You can also test Web services and their use in composite applications. The following functions can be used to plan automated tests with CBTA:

- CBTA Script
 To generate the initial test script, the user executes a business process while CBTA records which SAP objects are used and which activities performed by the user. This record serves as foundation for compiling a test script. You then add parameters so that test data can be used dynamically and transferred between process steps. CBTA scripts enable you to perform extensive checks of the test results. For example, after a
test is complete, the accuracy of data posted in the respective SAP tables can be verified using CBTA check functions.

- Test Data Container
 Test data for complex business process scenarios, for example, order-to-cash, can be planned flexibly with the Test Data Container. It also allows business process variants to be executed because the creation of variants is often mapped to multiple test data records based on variations in test data.

- System Data Container
 CBTA scripts are very flexible and can be used for a range of system landscapes because they are cataloged independently of systems. The system data container reveals the logical and physical system in which the automated tests will be executed. The creation and maintenance of the System Data Container is handled automatically by the Solution.

![Figure 184: SAP Solution Manager CBTA – Flow for Creating Automated Test Scripts](image)

- Test Composition Environment (TCE)
 The TCE provides all functions to create and maintain CBTA test scripts and test configurations. It enables you to create attributes for test configurations and test scripts and to compose E2E process tests, maintain parameters, and assign test data.
SAP Solution Manager Launch Pad - Catalog Test Suite

SAP Solution Manager supplies a range of tools for planning, executing, and analyzing functional tests. The SAP Solution Manager Launch Pad - Catalog Test Suite enables Web-based access to all test management functions. This means the functions relevant for each role are accessible through a single point of entry.

Figure 195: SAP Solution Manager Launchpad as the Central Point of Entry
3 LIFECYCLE OF TEST MANAGEMENT

3.1 Plan phase

3.1.1 Define the Test Strategy

In general, software is tested to check its functionality and quality in order to find errors and to identify gaps. Effective testing ensures that software is handed over to the productive environment almost free of errors to avoid malfunctions. Testing should also verify whether the initial requirements specified by the business are adequately fulfilled by the solution provided by IT.

Experience with SAP customers has shown that the definition of a test strategy that meets the expectations of both business and IT is the starting point for all test related activities. An effective test strategy describes the approach for test management, provides guidance, and should describe at least the following aspects:

- Test organization principles and communication channels
- Test types that have to be considered in various change scenarios
- Roles and responsibilities for test management, such as business process expert, test coordinator, and tester
- Rules and guidelines for the documentation of business requirements, test cases, and reports
- Tools to be used to support the scoping, planning, execution, and analysis of tests, including defect and incident tracking
- General test start and exit criteria by test type

Depending on the change event and project itself, and in context with the company’s overall test strategy, different test types are used. Therefore, the terminology used in this context must be described first. SAP adopts the standard V-model for requirement-based testing. Typically, the following test types are performed during implementation projects:

- Unit tests
 Module or object tests based on the technical design or specification.
- Single Functional tests
 Tests of single business process steps or transactions based on a functional design or specification.
- Functional Integration tests
 Tests that examine the correct execution of business processes and scenarios, crossing various SAP applications and interfaces to partner or third-party party applications. Integration tests are based on the Business Process Management documents.
- User acceptance tests
 Functional tests performed by key users of the changed functionality. Primary goals of user acceptance tests are to receive the formal acceptance of the business units and to identify usability problems.
• Regression tests
Tests that verify whether system changes affect the mission-critical business process behavior and their results. Usually, the effects of changes are known and can be predicted but sometimes the effects are not completely transparent.

• Technical developer tests
Tests carried out by software developers at the lowest technical level during the Build phase with a focus on technical aspects, such as correct handling of interfaces.

• Technical system tests
System tests are known in the SAP environment as technical system tests. Instead of looking at the functionality of the software in isolation, technical system tests check the entire system, including data consistency, databases, application servers, interfaces, network, and so on.

• Performance tests
Technical system tests that measure the throughput and response times of the system.

• Security tests
Tests that check user access and authorizations, segregation of duty (SOD), data security, and other security-related aspects.

3.1.2 Prepare the Tests

During the preparation phase, the test managers and their teams should adhere to the following basic process:

1. Review the test strategy in the context of the planned test project. Depending on the type of change, the suitable test types and approach must be determined and documented in a test concept.
2. Describe the goal of the test activities using a clear set of test objectives.
3. Specify the requirements for starting test activities, quality goals, and exit criteria to guide test preparation and manage expectations.
4. Identify the tools needed to support scoping, planning, execution, and analysis of the tests. This step depends largely on tools already licensed by your company.

 Example

Although SAP recommends using Solution Manager Test Suite, if your company already uses SAP Quality Center by HP as the standard tool for planning and execution, it might be better to integrate it with SAP Solution Manager.

5. Plan the budget for the test project regarding financial resources, availability of manual testers, test systems, equipment, and so on.

6. Plan the important milestones for the project. For example:
 o Start and end dates
 o Quality gates
 o Deadlines for code freeze, emergency corrections, and final transport

7. Clearly identify and define all roles and their responsibilities, from which you can create a user role and authorization concept. A typical test project includes the following roles:
 o Test manager
8. If necessary, plan the relevant training for the tools based on roles.

3.1.3 Identify the Test Scope

The process for identifying the test scope differs depending on whether you plan to implement a new SAP solution or change an existing solution.

When a new SAP solution is implemented, for example, SAP CRM as an enhancement to an existing SAP ERP installation, a number of business processes are adapted, configured, and documented in the Process Management. The test scope is derived from the list of business processes that have been adapted.

However, if you are changing an existing SAP solution, a different approach is required. After the planned change has been approved, an initial risk analysis determines the impact of the change on critical business processes. A second, more detailed risk analysis is then performed both during and after implementation of the change in the development system, and tests are run in the test system. The BPCA can support the change impact analysis by identifying the impact on critical business processes. This potentially reduces the amount of effort associated with testing and enables test resources to be targeted more precisely at risk areas. This process requires proper documentation of business processes and application objects in use. For more information about documentation and classification of business processes, see the **SAP Standard for Process Management**.

![Test Scope Identification](image-url)

Figure 20: Test Scope Identification
3.2 Build phase

Once you have identified the test scope for each individual test type, you can plan the actual tests. The typical basic process for the Build phase is as follows:

1. The user department collects the business requirements from the Business Blueprint. These can then be supplemented with test requirements by the QA department.
2. Based on these requirements, create manual and automated test cases, or adapt existing ones.
3. Assign all test cases to business processes of the Process Management to the related branch.
4. Identify suitable test cases and collect them in a test plan. These can be generated using the BPCA so that test resources are only targeted at areas that have been changed.
5. If necessary, define the test sequences.
6. Assign test cases/test packages to testers.
7. Equip all manual testers with a handout document that answers the following questions:
 - Where and how do I access my personal test package?
 - How do I access test case descriptions and the related test data?
 - How do I access the functionality of the test in the relevant test systems?
 - How do I document my test results?
 - What options do I have to set the status for results documentation and how do I make the settings?
 - How do I report and document incidents and defects?
 - Who is available as a contact person if I have problems?
 - How is the test organized (rooms, timeframe, and so on)?
8. Assign authorizations to all manual testers so that they can access the relevant systems and execute their test cases.
9. Update the tests systems so that they resemble the production systems but with the newly added changes already implemented. This often presents a major challenge because simply making a copy of the production system is not always possible for a variety of reasons.
10. Provide test data for the test cases.
11. This is a complex task, especially when testing process chains involving multiple steps, which requires carefully coordinated configuration, master, and transaction data. Therefore, SAP recommends using SAP TDMS to improve efficiency when creating and maintaining test data.
12. Ensure that the following prerequisites for test execution are fulfilled:
 - The relevant system roles are defined and assigned to the related solution landscape.
 - The relevant objects for used executables (transactions, reports, and so on) are at least assigned to the process step library. Recommended is the inherited usage of these objects in the documented business processes.
 - The relevant test scripts (manual or automated) are assigned to test objects.
3.3 Run phase

3.3.1 Execution and Documentation of Tests

Once the tests have been planned and test data is available on the test systems, testing can begin. The typical basic process for the Run phase is as follows:

1. Software developers perform unit tests in the development systems. Depending on the type and scope of the test cycle, various functional tests are performed.
2. Manual testers are provided with the tester handout document and receive details regarding their test package by e-mail.
3. Automated tests are scheduled or started directly.
4. Every test that is executed is logged and documented with test notes and a test status is set manually or automatically.
5. If the system responds in an unexpected way during manual testing, for example, if an error message appears, the tester records the incident in the corresponding ITSM system, attaching screenshots, log messages, and so on. Usually, this also has to be done manually even for automated tests.
6. The incident is sent to the persons responsible for the analysis and categorization of defects, who then correct the defect in the development system.
7. The correction is transported to the test system according to the existing arrangements and timelines, where it is then retested.

Integration Validation

Given the complexity and heterogeneity of modern software solutions, SAP recommends performing integration validation, especially for important business processes. This involves gathering and subsequently evaluating a substantial amount of data from the software applications that are active while a given business process is being executed. This type of validation also allows you to identify the hidden warnings and error messages that frequently occur at the interfaces between applications.

Load Testing

If large-scale changes are made or new software solutions are implemented, load tests should be performed before these are used in production. These tests simulate a situation in which the expected load (known number of users and background load in a load-peak situation) is simulated. While doing so, system behavior in handling large data volumes can be inspected. Throughout the entire test cycle, test coordinators monitor the test status and progress, as well as the processing status of incidents that have been reported.

Deployment

Once all tests and criteria of the test concept are met, the quality gate can be scheduled. This meeting brings together all the parties responsible, who evaluate the outcome of the tests and decide whether to release the changes to the production system. If they reach a positive decision, the solution is deployed in the production system.
3.4 Optimize phase

The main advantage, and at the same time the main disadvantage, of manual testing is the fact that it is performed by people. This is an advantage in that experienced key users in your organization are able to give you valuable feedback regarding the system under test, for example, concerning the usability of the system or the completeness of the documentation. However, the human factor can also be a disadvantage, not least because you have to recruit your team of testers, give them an induction into the project, provide them with support, and so on. People also make mistakes during their tests, leading to defect reports where you cannot always be sure whether the problem was caused by the software or the tester.

Given the disadvantages of manual testing, many people involved in the test process have looked to automated testing to support them during regression tests. Automated testing has some advantages that are immediately evident; for example, the test case can be run quickly, reliably, and repeatedly at the click of a button and fewer people are needed during the execution phase of a test project if at least some of the tests are automated.

However, there are drawbacks to automated testing that must be taken into consideration. First of all, there are the licensing and maintenance fees for test automation tools, not to mention the training costs for the test automation team. A further aspect of automated testing that is underestimated by many is the fact that creating automated tests often takes longer than creating a similar manual test case. The increased speed of automated testing compared with manual tests is found exclusively in the repeated execution of the tests.

Therefore, test automation is only beneficial if you create reusable test cases. This requires the clear modeling of an overall test approach before you start developing automated test cases. Despite the initial overhead associated with automated testing, there are considerable savings to be made over the course of several test cycles, as long as the test automation is restricted to test cases that can be reused in more than one scenario. For example, a posting inbound goods test case could also be used to test an order processing scenario or warehouse management.

However, it is important to note that complete test automation is unlikely to be a realistic goal in a test project. There will always be test cases that do not need to be reused, or where automation is hard to achieve, for example, because of the user interface of the application. Especially in the early stages of test automation, it is better to set a modest automation goal and expand the efforts in a later project.
4 DRIVING CONTINUOUS IMPROVEMENT

It is important that your organization learns from each test cycle so that your tests become increasingly effective and efficient. This section describes some key steps you can take to drive continuous improvement and increased value for your test management processes.

4.1 Quality Assurance Tasks

From a quality management perspective the key tasks are as follows:

- Ensure quality of testing (plan, scope, and execution) to mitigate risks for business disruption in production within appropriate timeline and cost
- Evaluate quality of testing activities (for example, number of test cases that pass the quality gate)
- Evaluate test execution time and degree of test automation to identify potential efficiency improvements
- Track the number of incidents after going live that are related to test management issues. Based on the analysis, define a continuous improvement plan for test management.
- Ensure adequate documentation quality within a Single Source of Truth

4.2 Quality Targets and KPIs

To ensure continuous improvement of the test management process and drive the value recognition of IT, the most important quality targets are as follows:

To assess the quality of the test management process, clearly defined parameters and measurable objectives are required. The key parameters should be collated and evaluated in regular reports. The historical data that is created in this way can be used to identify trends and then derive the necessary measures to take.

The following table describes the main challenges for each of these quality targets and which KPIs can be used to measure them:

<table>
<thead>
<tr>
<th>Quality Targets</th>
<th>Main challenges</th>
<th>KPIs</th>
</tr>
</thead>
</table>
| Deliver business innovations faster | • Speeding up test scope identification, test execution, and defect management | • Average time and effort spent for test scope identification
• Average time and effort spent for test execution
• Average time and effort spent for defect management |
| Improve stability and reliability of business processes and reduce business risks | • Reduce the number of critical defects and incidents that occur in the production environment by setting up your test management processes so that as many as possible are addressed during the test phase. | • Percentage of incidents caused by unknown issues after go-live
• A high percentage of incidents after go-live indicates that you need to assess the quality of test scope, test cases, and defect management. These KPIs can |
<table>
<thead>
<tr>
<th>Quality Targets</th>
<th>Main challenges</th>
<th>KPIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Targets</td>
<td>• Prioritizing incidents and following up on them accordingly</td>
<td>be based on the number, nature, and severity of defects entering production system.</td>
</tr>
<tr>
<td>Quality Targets</td>
<td>• Percentage of test case coverage in relation to incidents arising after go-live.</td>
<td></td>
</tr>
<tr>
<td>Quality Targets</td>
<td>• A low test coverage and high number of incidents after go-live indicates that you need to increase the scope of your test cases.</td>
<td></td>
</tr>
<tr>
<td>Quality Targets</td>
<td>• Ratio of critical business processes steps tested for performance regularly to identify issues in solution transition quality.</td>
<td></td>
</tr>
<tr>
<td>Increase efficiency</td>
<td>• Ensuring quality while reducing costs</td>
<td>• Automation helps reduce testing timelines and increase test case coverage. From a QM perspective, reusability is also a factor.</td>
</tr>
<tr>
<td>Increase efficiency</td>
<td>• Increasing speed</td>
<td>o Ratio of automated test cases to total test cases performed</td>
</tr>
<tr>
<td>Increase efficiency</td>
<td>• This can be achieved by replacing costly, time-consuming manual testing processes with automated tools, minimizing the required resources for both IT and business, while still ensuring that key issues are still addressed. Reusable scripts, a cohesive test framework, and automated test processes result in quicker benefits and reduced costs.</td>
<td>o Percentage of test cases that are reusable</td>
</tr>
<tr>
<td>Increase efficiency</td>
<td>• Ratio of automated test cases to total test cases performed</td>
<td>• Quality process that includes updated test cases to reduce the amount of incidents in the production environment</td>
</tr>
<tr>
<td>Increase efficiency</td>
<td>• Percentage of test cases reviewed or changed after errors are identified</td>
<td>o Percentage of test cases reviewed or changed after errors are identified</td>
</tr>
<tr>
<td>Increase efficiency</td>
<td>• Number of new functional or technical defects identified during integration test phase</td>
<td>o Number of new functional or technical defects identified during integration test phase</td>
</tr>
<tr>
<td>Increase efficiency</td>
<td>• Percentage of test processes executed according to policy</td>
<td>o Percentage of test processes executed according to policy</td>
</tr>
<tr>
<td>Increase efficiency</td>
<td>• Percentage of reported incidents that were not in test scope</td>
<td>o Percentage of reported incidents that were not in test scope</td>
</tr>
<tr>
<td>Quality Targets</td>
<td>Main challenges</td>
<td>KPIs</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Percentage of reported incidents that passed the quality gate for production</td>
</tr>
</tbody>
</table>
5 TRAINING

SAP offers the following training courses for Test Management:

- SM1310 Implementation Projects with SAP Solution Manager
- CA611 Test Management with eCATT
- TDMS10 Test Data Configuration and Execution with SAP TDMS 4.0
- TDMS20 Using SAP TDMS for BPL, HCM and Data Scrambling
- E2E220 Test Management Overview

Expert Guided Implementation Sessions

Expert guided implementation (EGI) is a delivery methodology, which balances the combination of training, practical experience, and expertise on demand. The focus is to enable the customer to execute complex activities with the help of SAP experts. It is important that during the delivery itself, the activity is executed as described in the delivery slot. Examples activities include performing an update, building a Customizing, or executing a service.

Expert guided implementation enables you to execute activities without being a subject matter expert. The methodology closes the gap between classroom training and consulting. Expert guided implementation provides guidance for the execution phase of your project. The goal is to execute all relevant steps that are necessary to complete a defined activity during the delivery time of expert guided implementation. After the delivery, the targeted activity should be complete. For an overview of available EGIs, see the SAP Enterprise Support Academy on Service Marketplace at https://support.sap.com/support-programs-services/offerings/enterprise-support/academy/delivery.html.

![Expert-Guided Implementation Portfolio Overview](image_url)

Figure 21: Overview EGIs